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ABSTRACT 

 

The recently proposed Sparse Shape Composition (SSC) 

models shape prior as a sparse linear combination of 

existing shapes. It is effective to represent complex shape 

variations, with its ability to capture gross errors and 

preserve local details. However, SSC has low efficiency 

when dealing with large-scale training data, which adversely 

affects its more widespread clinical use. In this paper, we 

investigate efficient and scalable convex optimization 

methods and propose a nearly real-time SSC for large 

dataset. The new method solves the convex optimization 

problem in SSC by continuously transforming it into a series 

of simplified problems whose solution is fast to compute, 

without sacrificing the accuracy. It significantly speeds up 

the shape modeling process. When the repository’s capacity 

is 10000, with 2000 vertices on each shape, the optimization 

can be solved by the new method in less than 10 seconds, 

nearly 2000 times faster than traditional method in SSC. 

Thus, it is more applicable in real-time clinical applications. 

 

Index Terms—Sparse shape composition, shape prior, 

segmentation, fast optimization, large scale 

 

1. INTRODUCTION 

 

Shape prior based approaches are widely used in medical 

image segmentation. They are more stable against local 

image artifacts than traditional methods that solely rely on 

low-level appearance cues. To obtain patient adaptive shape 

prior, statistical shape models are usually employed to 

model shape variations [1, 2], such as the Active Shape 

Model (ASM), which represents a shape by the mean and 

variation of a unimodal Gaussian distribution [3]. When 

shapes follow a multimodal distribution, a mixture of 

Gaussians may be able to handle them [4]. More general 

non-linear shape priors may be modeled by manifold 

learning techniques [5], which overcome the limitation of 

ASM on statistical constraint. Alternatively, the shape space 

can be divided into multiple sub-spaces by population-based 

and patient-specific shape statistics [6, 7]. 

Sparse Shape Composition (SSC) [8] is a recently 

proposed method for shape prior modeling. In SSC, a new 

shape is approximately represented by a sparse combination 

of shapes in an informative repository. SSC can effectively 

model complex shape variations, which may be difficult to 

represent by traditional parametric models. In addition, an 

input shape may include sparse gross errors, which could be 

caused by mis-segmentation or erroneous detection. By 

explicitly modeling gross errors using sparsity constraints, 

SSC is able to capture them and thus be robust to outliers.  

Furthermore, SSC can preserve local details even when they 

are not statistically significant in the repository [8, 9]. 

SSC has been successfully applied in the liver surgical 

planning system [9] and other applications. However, its 

computational efficiency may be limited by the increase of 

the repository’s capacity and the number of vertices on each 

shape. To obtain efficient shape modeling, one may 

decrease the repository’s capacity or the number of vertices, 

but the accuracy will also be reduced. Dictionary learning 

method can improve the speed of computation by reducing 

the redundancy of the shape repository [10].  However, the 

dictionary still inevitably loses some important shape 

information and it needs to be updated every time when new 

shapes are added to the repository. 

In this paper, we introduce a homotopy-based method to 

quickly solve the convex optimization problem in SSC. 

Recently, many methods have been proposed in the signal 

processing and optimization community to solve L1-

miminization problems, and the homotopy method shows 

significantly reduced running time when the signal is very 

sparse. We adapt this method in the shape prior modeling 

problem, i.e., to deal with the L1-regulated sparse 

composition of shapes. The runtime of the new method just 

increases very slowly when the scale of training samples 

and the number of vertices grow. This helps SSC maintain 

high efficiency without lowering accuracy when dealing 

with large scale training data and shapes with a high number 

of vertices. Thus, this scalable SSC is more applicable in 

real-time clinical applications. 

 

2. METHODOLOGY 

 

Sparse Shape Composition: SSC represents shapes by 2D 

contours or 3D triangular meshes. A shape is denoted as a 

column vector that is formed by stacking coordinates of all 

the vertices. A shape containing   vertices with the 

dimensionality of   can be represented by     , 



where       . A training repository consisting of    

shapes can be denoted as   [          ]      . All 

shapes are pre-aligned using generalized Procrustes analysis 

[3]. Considering an input shape      , it can be 

transformed to the common canonical space of   by a 

spatial transformation operator   with a parameter vector  , 

i.e.,          . The SSC representation is obtained by 

solving the following L1-norm optimization problem: 
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where      denotes the coefficients for training samples, 

and       represents the gross errors or outliers.    

controls the weight between the L2- and L1-norm, and    

controls the weight between the sparsity of    and that of  . 

Linear Programming (LP): The problem in Eq. 1 can be 

cast as a LP problem 
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This LP problem can be solved via interior point methods 

[11], which have a complexity of polynomial time
1

. 

However, when the problem is large scale, or it involves 

dense matrix data, the potential advantage of sophisticated 

interior point methods will often be precluded [12]. 

Proximal Gradient:   and   can be stacked to form a 

new vector        , thus the problem in Eq. 1 can be 

converted to an equal optimization problem that deals with 

just one variable   . We define   [      ]          , 

where      is a unit matrix of size  . Thus, Eq. 1 can be 

written as: 
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where the L1-norm is defined as ‖  ‖  ‖ ‖    ‖ ‖ .  

One of the most popular proximal gradient-based 

algorithms is the iterative shrinkage-thresholding algorithm 

(ISTA) [13]. The general step of ISTA is: 
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where      stands for a gradient step of the fit-to-data least 

square term in Eq. 3.   is an appropriate step size and    is 

a shrinkage operator defined by: 
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 The current version of released SSC code is based on LP, 

which is implemented in CVX, a toolbox designed for 

Disciplined Convex Programs: http://cvxr.com/cvx  

The computational cost of ISTA is relatively cheap since 

each iteration includes matrix-vector multiplication 

involving   and    followed by a shrinkage/soft-threshold 

step [13]. The advantage of ISTA is its simplicity. However, 

it has also been recognized as a slow method and it has a 

worst-case convergence of         The fast iterative 

shrinkage-thresholding algorithm (FISTA) [12] is proposed 

to accelerate the convergence rate of ISTA. FISTA 

considers a method that is similar to ISTA. It employs the 

iterative shrinkage operator at the point which uses a 

specific linear combination of the previous two points, 

rather than at the previous point. FISTA preserves the 

computational simplicity of ISTA but has a global better 

rate of convergence which is          [14]. 

Homotopy Method: The original convex optimization 

problem in SSC can be continuously transformed into a 

series of simplified problems whose solution is fast to 

compute. We consider the following problem: 
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where   is defined as             ̂      and   is a 

vector that is defined as       ̂  on the support set of a 

given warm-start vector  ̂.   is a factor ranging from 0 to 1. 

When    , the optimal solution for Eq. 6 is  ̂ ; as   

changes from 0 to 1, the problem of Eq. 6 will gradually 

deform to the original one of Eq. 3. At any value of  , the 

optimal solution    is completely determined by the support 

set   and its sign sequence [15].   changes only at certain 

nodes of   [16, 17]. When   has not been changed, the 

direction in which    moves is: 
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      can be moved in direction     until either one of the 

optimization constraints [15] is violated, indicating an 

element should be added to  , or one of the nonzero element 

in    shrinks to zero, indicating one element should be 

removed from  . We use    to denote the smallest step-size 

that leads to one of these changes in  . When   is increased 

by   , the new optimal solution will become         , 

and we need to update a Cholesky factorization of    
    

   

and    , which has a computational cost of         flops 

(assuming there are   elements in  ). Thus the 

computational cost of one step is close to the cost of one 

application of each   and   , which is close to      
                 flops. Thus it is obviously far 

more effective than LP. In addition, when the warm-start 

solution  ̂ is set as 0, the number of steps that  ̂ will take to 

deform to the solution of Eq. 3 is approximately determined 

by the sparsity of the solution. Thus, the homotopy method 

significantly boosts the computational efficiency compared 

with the traditional SSC that uses LP, and it also converges 

much faster than FISTA. 



  

  

  
Fig. 2. 3D visualization of SSC shape model. First row: 

original liver image. Second row: input shape. Third row: 

result of SSC. 

 

3. EXPERIMENTS 

 

Experimental Setting: Our algorithm was validated in the 

application of a liver surgical planning system. SSC was 

used to model the shape prior of the liver. In the 

experiments, we focused on the comparison of 

computational cost of LP, FISTA and homotopy method 

when they converge to the same accuracy. The repository’s 

capacity was set from 1000 to 10000, and the number of 

vertices on each shape varied from 500 to 2000. The 

adaptive focus deformable model (AFDM) [18] was used to 

obtain one-to-one correspondence of vertices on different 

meshes. The input liver shape was obtained by a rough liver 

segmentation based on simple region growing method, 

which was rapidly performed. The segmentation result was 

then converted to a surface and registered to the reference 

shape in the repository. All the experiments were performed 

on a 3.0 GHz Workstation with 4 cores and 16G RAM, and 

the algorithms are in MATLAB implementation. 

Evaluation of the Computational Efficiency: The 

average runtimes for the three algorithms are shown in Fig. 

1. The results were based on the average performance on 20 

cases for each algorithm. Firstly, we tested the performance 

of these algorithms when the number of vertices was fixed 

and the repository’s capacity changed. In Fig. 1(a), the 

number of vertices was set as 500. It is shown that with the 

increase of the repository’s capacity, the time consumed by 

FISTA and LP rose rapidly. In contrast, the homotopy 

method had a relatively slow increase of runtime with the 

rise of repository’s capacity. When the repository’s capacity 

increased from 1000 to 10000, homotopy method had a 

runtime ranging from 1.35s to 2.95s, but the time consumed 

by FISTA increased from 1.97s to 15.75s, and LP consumed 

2.56min to 25.33min. Fig. 1(b) and Fig. 1(c) show some 

similar conclusions.  

Fig. 1(a) to Fig. 1(c) show that the runtime of all these 

algorithms increased when the number of vertices became 

greater. However, FISTA and LP had an obvious sharp rise 

of runtime with the increase of vertices number, while the 

runtime of homotopy method increased very slowly. When 

the repository’s capacity was enlarged to 10000, and the 

number of vertices was set as 2000, the new method just 

cost 9.95s, while FISTA and LP cost about 15 times and 

2000 times, respectively, of the running time consumed by 

homotopy method. 

   
(a) number of vertices:500 (b) number of vertices:1000 (c) number of vertices:2000 

Fig. 1. Runtime of SSC with the increase of repository’s capacity and number of vertices. FISTA, Homotopy and LP 

converge to the same accuracy. Please note that the running time of LP is in minute, as shown in the green axis on right. 



 Evaluation of Shape Prior Efficacy: Fig. 2 shows the 

result of liver shape prior modeling based on the fast SSC. 

Both the repository’s capacity and the number of vertices 

were set as 2000. In the first column, the kidney led to an 

over-segmentation, but the SSC excluded the kidney region 

effectively. In the second column, the patient had a 

radiofrequency ablation in the past. The gray level of tumor 

region was obviously different from that of normal regions. 

The tumor region was not included in the initial 

segmentation result, and the input shape had a concave 

region in the right lobe of the liver. The SSC preserved the 

tumor region in the output shape. In addition, one part of the 

heart was over-segmented in the input shape, but it was 

excluded by SSC in the output shape. Furthermore, local 

details of the input shape, such as corners of the liver, were 

preserved well in the output shape. We compared the SSC 

output with manually segmented results. The average 

symmetric surface distance (ASD) for the two cases in Fig. 

2 were 1.28mm and 1.32mm respectively. 

 

4. CONCLUSION 

 

In this paper, we introduced a homotopy method to speed up 

the convex optimization process in SSC. This method 

continuously transforms the optimization problem into a 

series of simplified problems whose solution is fast to 

compute. Its runtime increases very slowly with the rise of 

the scale of training data and number of vertices. In 

conditions where the repository’s capacity is very large and 

the number of vertices is very high, the new method shows a 

great advantage to quickly solve the optimization problem. 

Experiments show that SSC is an effective method to model 

the complex liver shape variations in liver surgical planning 

system. When the computational efficiency is boosted, SSC 

becomes more promising to be smoothly applied in clinical 

environments, with its fast speed and high accuracy. It 

should be noticed that the new optimization method is 

general and it can benefit other applications as well. 
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